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Abstract

Expressions for the perimeter of the unit circle of a normal linear plane in terms of elliptic integrals of

the first and second kinds are given. Asymptotic results, where the center is close to the boundary are

discussed. An affine transformation is used to obtain similar results for an ellipse.



L Introduction. We use elliptic integrals of the first and second kind. Kline [6] contains a historical

account of elliptic integrals. Abramowitz and Stegun [21 contains properties and tables for elliptic

integrals.

An elliptic integral of the first kind is given by

K (r, p) =
(1) 

I r2 sin 2  <

0

If the upper limit V = r then these integrals are called complete. Otherwise they are called
2

incomplete.

Let K be a centrally symmetric plane convex body, centered at the origin. We can think of

K as the unit disk for a 2-dimensional Banach space, or Minkowski plane. Let or(K) denote the

length of K, computed using the metric induced by K. Then a(K) is called the "self-circumference"

of K. More generally if K is not necessarily centrally symmetric, and z is any interior point of K,

we can define o,+ (K, z) and a (1K. z) the respective positive and negative self-circumferences of K

at z , which both reduce to or(K) in case K is centrally symmetric with z as its center. It is shown

that if K = B , a Euclidean unit circle, and z is at a distance r , 0 < r < 1 , from the center then

a+ (B. z) can be expressed in terms of the complete elliptic integral of the second kind. In the next

section we define a related function r(K, z) for a convex body K and show that if K = B , a

Euclidean unit circle, with z a distance r < 1 from the center then r(B, z) is given by a complete

elliptic integral of the first kind.

Section 2 contains preliminary definitions and concepts. Calculation of self-circumference in

terms of elliptic integrals is given in section 3. An asymptotic analysis as z approaches the boundary

of a unit circle as well as other properties of self-circumference is given in section 4. In section 5 an

affine transformation is used to discuss similar results for an ellipse.
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Preliminaries. By a plane convex body we mean a compact convex subset of the Euclidean plane

with nonemDtv interior. Let K be a plane convex body with the origin as an interior point. For each

angle 0 , 0 < 0 < 2 7r we let r(K, 0) be the radius of K in direction 0 , so that the boundary of

K has equation r = r(K, 0) in polar coordinates. The distance from the origin to the supporting line

of K with outward unit normal (cos 0, sin 0) is denoted by h(K, 0) . This is the supporting

function of K restricted to the unit circle. Since K is convex, it has a well-defined unique tangent

line at all but a countable number of points. We let ds(K, 0) represent the element of Euclidean

arclength of the boundary of K at a point where the unit normal is given by

27r

(3) L(K) = J h(K, 0) dO.

0

The polar dual of K , denoted by K*. is another plane convex body having the origin as an

interior point and i defined in such a way that

(4) h(K*, 0) = r1 and r(K*. 0)
h-r(K, 0h(K, 0)

A result which we will use in our later discussion is Steinhardt's inequality [8] given by

(5) L(K) L(K*) > 412

If K is a centrally symmetric plane convex body centered at the origin, then the self-

circumference u(K) is given by

27r(6 ds(K, 0)
(6) o(K)=f r(K, 0 + 7)'

0

If K is not necessarily symmetric and z is any point interior to K , then positive and negative self-

circumference of K relative to z are defined by

27r
7 Kds(K, 0)(7) + (K z) f r(K, 0 + 1E )

02

and
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2r

(8) a- (K, z) ds(K, 0)

f = (K, 0-P0 2"

where the origin of the coordinate system is at z . Both u+(K, z) and a'(K, z) reduce to a(K) in

case K is centrally symmetric with z as its center.

If K1 and K2 are plane convex bodies with the origin as an interior point, then the length of

the positively oriented boundary of K1 , with respect to K2 is given by

2wr2v ds(KI , 0)

(9) u.+(KI, K 2 ) = Tr( +)

0

and the length of the negatively oriented boundary is given by

27r
(10 ds(KI , 0)

(10) f r(K, 0-
0 2)

A natural generalization of the function a is the following function

-r(K, z) for a plane convex body K at a point z defined by

2r
((K.Z)= ds(K, B)

J r(K. 0) + r (K, 0 + w)
0

In case K is centrally symmetric with z as the center, then r(K, z) represents half of the

Minkowskian "self-circumference-. More generally if K is a convex body in Rn , n > 2 then let z

be an interior point of K , and for each direction u let A(u) be the area (i.e. (n-1)-dimensional

volume) of the intersections of K with the hyperplane passing through z and having unit normal u .

Let d S(u) be the area element of the boundary of K at a point with outward unit normal u . We

define

(12) r(, A(u) where

the integration is over the boundary of K . Then r(K, z) is affine invariant. Chakerian and Talley

[3] investigates properties of r . In particular it is shown there that if Bn is the unit n-ball in Rn

then
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(13) -r(Bn, z) = 2{ir (r(n))-' rQ' + 1) F(!n~ , I , r 2)

where r < 1 is the distance from z to the center of B n , r is the Gamma function, and F is the

Gauss hypergeometric function. In the case n =2 , (13) reduces to an elliptic integral of the first

kind via the relation

(14) K(r, )= x1rF( , 1,r 2).

We next use definitions and concepts developed above to discuss self-circumference of a

Euclidean unit circle with respect to an interior point, not necessarily the center, in terms of elliptic

integrals. Asymptotic results as z approaches the boundary are included. An affine transformation

will give related results for an ellipse.

3. The unit circle. In this section we calculate functions ar and r defined earlier for a Euclidean

unit circle with respect to an interior point. Thus we view a Euclidean unit circle as a unit circle of a

Minkowski plane with a norm which is not necessarily symmetric. The following theorem gives a result

for the positive self-circumference a Euclidean unit circle with respect to an interior point.

Theorem 1. Let B denote a Euclidean unit circle. Assume z is an interior point of B with

distance r < 1 from the center. Then the positive self-circumference U+(B, z) is given by

(15) O+(B, Z) 1 4  - r 2 sin 2)

0

Proof. Without loss of generality assume z is on a horizontal axis as it is shown in Figure 1.

Let 0 denote the center of B . Let P denote a point on the boundary of B such that the unit

normal is given by (cos 0, sin 0) . Draw a perpendicular to OP from z and assume that it

intersects the boundary of B at Q . Using simple trigonometry it follows that
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d(z, Q) = r(B, 0 + =) r sin + 41 - r2 COS 2 0

Since the arc length element ds(B, 0) is equal to dO for the Euclidean unit circle, by using (7) we

obtain

27r

+ (B , z) = / 2 odJ rsinO+ 41-r Cos
0

After rationalizing the denominator we obtain

U-(B, z) 4 2 J1-r2sin29 dO,

0

which gives the desired result by giving the definition given in (2) . 1

The following theorem gives a similar result to theorem 1 for calculating the function r

defined earlier.

Theorem 2. Consider a Euclidean unit circle B . Let z be an interior point with distance r <

1 from the center. Then the self-circumference r is given by

(16) 7(B, z) = 2 K(r, Z)

where K denotes tie complete elliptic integral of the first kind.

Proof. The proof follows from the restillt of Chakerian and Talley given in formula (13) and the

formula (14) relating Gauss's hypergeometric function and the complete elliptic integral of first kind.

A direct calculation similar to the proof of theorem 1 will also give the proof. I

In the next theorem we use the following Landen's transformation for the hypergeometric

function

(17) r( , 1 = (I + x) rQ , 1 X2 .

See Amkvist and Berndt [1, p 442] for more detail on the above formula. Their article is also very

interesting and discusses calculation of ,r and related topics.
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Theorem a. Consider a Euclidean unit circle as drawn in Figure 2. Assume

r < 1 . Let P denote a point with distance Tr from the center 0. Label A and B on a

horizontal axis as shown. Connect A to P and extend to intersect the circle at B' . Draw B' A'

parallel to BA and let the intersection with a vertical axis he called z*. Draw a perpendicular to

AB' and denote by z the intersection with the horizontal. Denote the unit circle by K . Then the

function r satisfies

(18) r(K, z*) = (1 + r) r (K, z)

Proof. Using n = 2 and formula (13) we obtain

7(1\. 7) = W Fr , 1 , r2)
(2 2

where we have used similar triangles to conclude d(O, z) = r

By some simple trigonometry using the fornmla

sin20- 2tan 0
I + tan2 0

we obtain

d(O. z*) -- .

By (17) it follows that

r(1 1 2) = (1 + r) rF(I 1,1 r2)

By using theorem 2 we obtain the desirid result given in (18). U

The following theorem gixes the self-circumference of a Euclidean unit circle with respect to a

convex curve K . The proof is given by the author in [5] and is omitted.

Theorem 4. Let K be a plane convex body. Assume B is the Euclidean unit circle. Then the

length of B with respect to K is equal to the Euclidean length of the polar dual of K . This is

6



(19) o,+(B, K) = L(K*) where

K* denotes the polar dual of K

Using formulas (3) and (4) and the law of cosine the length of polar duals of convex curves

containing circular arcs will also yield elliptic integrals. The calculation for specific curves will be

treated in another work.

4. Asymptotic Estimates. In this section asymptotic results for self-circumference of a unit circle

where the center is close to the boundary is discussed.

Using the relation between elliptic integrals and the hypergeometric function formulas (15) and

(16) given in theorenms I and 2 reduce to

(20) cr+(B.z)= 2  -' -F(- , r 2 and
- r 2 -)

(21) r(B. z)= rF(I , 1. 1, r2)

To obtain an asymptotic result for a+ and given by (20) and (21) we use the following result (22)

from Erdelyi et al [4. p 74]

Ve first introduce some notation before stating the theorem. Let F denote the Gamma

function and F the hypergeometric function. Let ' denote the Euler i' function. Use the shifted

factorial Pochhammer notation

F(a + k)
(a)k - (a)

Let F(a, b , c denote the hypergeometric function. Assume c - a - b = d , where d is a

positive integer. Then in a neighborhood of C = 1 ,

((d) F(a+ b+d) d-1 (a)n (b)n )n(22) F(a , b , a + b + d , () = E~ )rb+d 0-')n( )
r(a +d) r(b +d) n =O0( 'd' n

+(1 )d ()d F(a+ b+d) 0 (a+d)n (b+d)n
r(a) F(b) n =0 n! (n + d)!

[kn - l10 - (1- ()n where
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d - I
kn = O(n+ 1) + tV,(n + I +d)-1(a+n+d)- ,(b+n-d) and where L7 denotes zero if dn--0
-0.

By using (20), (21) and (22) we obtain the first few terms of asymptotic calculation for a,+

and r as follows:

(23) O+Bz) r- + 41og2- I-log(1-r 2 ),

(24) 7-(B, z) - - log(l - r2 ) + 4log 2

By using (13) and (22) we obtain

(25) r(B' , z) -- (n - 1) log (1- r2 )

More terms for results in (23), (24) and (25) can be obtained by carrying out more terms of the

formula given in (22) for each case.

5. Ellips . In this section we treat the self-circumference of an ellipse. Using the fact that self-

circumference is affine invariant we obtain the following theorem 5. The proof follows from theorems 1

and 2 and the affine invariance of the self-circumference.

Theorem 5. Consider an ellipse K with major and minor semi-axes a , b and eccentriaty e = c

where c = Ta2 - b2 . Let P denote one of the foci of the ellipse. Then

(26) 1 1 1 2 and(26) ar+(K, P) 2 -er F(- 1 , 1), I,e2an

(27) r(K, P) = ir F(1 , 1 , I, e 2 )

The exact formula for the Euclidean length of an ellipse is given by

(28) L(a, b) = 27r aF( 1 ,e2).

8



See [1, 598] for more detail on the above formula. Then combining (26) and (28) together with

properties of elliptic integrals and the hypergeometric series gives

(29) a+(K, P) a L(a, b) re

L(a, b) denotes the Euclidean length of an ellipse with semi axes a and b.

Let L* (a, b) denote the Euclidean length of the polar dual of an ellipse with respect to the

center. Then by using (3) and (4) a straight forward calculation yields

27r

(30) L* (a, b) =4 1 dt .
0

By using (27) and (30) we obtain

(31) r(K, P) :- ! L* (a, b) .

After multiplying (29) and (31) and using Steinhardt's inequality by (5) we obtain

(32) 01+(K, P) r(K. P) > 27r 2

with equality if and only if K is a circle. This result could be obtained directly by using the

definition of elliptic integrals of the first and second kinds and the Cauchy-Schwarz inequality. Pfiefer

[7] discusses inequalities for perimeter of an ellipse. By using bounds for perimeter of an ellipse and the

formula (29) inequality for self-circumference of an ellipse can be obtained.
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